Comparative performance analysis of convolutional neural network-architectures on coffee-bean roast classification

Irfan Asfy Fakhry Anto, Jony Winaryo Wibowo, Aris Munandar, Taufik Ibnu Salim

Abstract


The classification of coffee bean roast levels using Agtron standards has evolved from traditional subjective methods to technology-driven approaches employing advanced artificial intelligence. Recent advancements in computer vision have demonstrated the capability of convolutional neural networks (CNNs) in providing objective and consistent roast level classification compared to human visual assessment, which is prone to variability and subjectivity. This research presents a performance analysis of five CNN architectures (AlexNet, ResNet, MobileNet, VGGNet, and DenseNet) for classifying coffee beans into eight distinct Agtron roast levels. The comprehensive methodology encompasses four phases: i) data acquisition, ii) image preprocessing, iii) model training and validation, and iv) evaluation metric. During training-validation, DenseNet outperformed other models, achieving 99.702% training accuracy and 77.68% validation accuracy. In the testing evaluation, DenseNet also led with an average testing accuracy of 93.8%, followed by ResNet at 92.6%, VGGNet and AlexNet both at 92.4%, and MobileNet at 89.7%. The results show that the DenseNet shows promise in classifying Agtron coffee-bean roast classification.

Keywords


Agtron level; classification; coffee-bean roast; convolutional neural networks; performance analysis;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v23i6.27090

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats