A Study on Image Reconfiguration Algorithm of Compressed Sensing

Zhang Yubo, Wang Dongmei, Lingling Kan, Panpan Zhao

Abstract


Compressed sensing theory is a subversion of the traditional theory. The theory obtains data sampling points while achieves data compression. The main content of this thesis is reconstruction algorithm. It’s the key of the compressed sensing theory, which directly determines the quality of reconstructed signal, reconstruction speed and application effect. In this paper, we have studied the theory of compressed sensing and the existing reconstruction algorithms, then choosing three algorithms (OMP, CoSaMP, StOMP) as the research. On the basis of summarizing the existing algorithms and models, we analyze the results such as PSNR, relative error, matching ratio and running time of them from image signal respectively. In the three reconstruction algorithms, OMP algorithm has the best accuracy for image reconstruction. The convergence speed of CoSaMP algorithm is faster than that of the OMP algorithm’s, but it depends on sparsity K quietly. StOMP algorithm on image reconstruction effect is the best, and the convergence speed is also the fastest.

Keywords


compressed sensing; image processing; reconstruction algorithm;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v15i1.3710

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats