A New Semi-supervised Clustering Algorithm Based on Variational Bayesian and Its Application
Shoulin Yin, Jie Liu, Lin Teng
Abstract
Biclustering algorithm is proposed for discovering matrix with biological significance in gene expression data matrix and it is used widely in machine learning which can cluster the row and column of matrix. In order to further improve the performance of biclustering algorithm, this paper proposes a semi-supervised clustering algorithm based on variational Bayesian. Firstly, it introduces supplementary information of row and column for biclustering process and represents corresponding joint distribution probability model. In addition, it estimates the parameter of joint distribution probability model based on variational Bayesian learning method. Finally, it estimates the performance of proposed algorithm through synthesized data and real gene expression data set. Experiments show that normalized mutual information of this paper ’ s new method is better than relevant biclustering algorithms for biclustering analysis.
Keywords
Biclustering algorithm, Variational Bayesian, Joint distribution probability, Semi-supervised clustering
DOI:
http://doi.org/10.12928/telkomnika.v14i3.3805
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats