Computer Aided Diagnosis using Margin and Posterior Acoustic Featuresfor Breast Ultrasound Images
Hanung Adi Nugroho, Yuli Triyani, Made Rahmawaty, Igi Ardiyanto
Abstract
Breast cancer is the most commonly diagnosed cancer among females worldwide. Computer aided diagnosis (CAD) was developed to assist radiologists in detecting and evaluating nodules so it can improve diagnostic accuracy, avoid unnecessary biopsies, reduce anxiety and control costs. This research proposes a method of CAD for breast ultrasound images based on margin and posterior acoustic features. It consists of preprocessing, segmentation using active contour without edge (ACWE) and morphological, feature extraction and classification. Texture and geometry analysis was used to determine the characteristics of the posterior acoustic and margin nodules. Support vector machines (SVM) provided better performance than multilayer perceptron (MLP). The performance of proposed method achieved the accuracy of 91.35%, sensitivity of 92.00%, specificity of 89.66%, PPV of 95.83%, NPV of 81.26% and Kappa of 0.7915. These results indicate that the developed CAD has potential to be implemented for diagnosis of breast cancer using ultrasound images.
Keywords
computer aided diagnosis, ultrasonography, breast cancer, margin, posterior acoustic feature
DOI:
http://doi.org/10.12928/telkomnika.v15i4.5021
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats