Automatic Summarization in Chinese Product Reviews
Li zhen Liu, Wan di Du, Han shi Wang, Wei Song
Abstract
With the increasing number of online comments, it was hard for buyers to find useful information in a short time so it made sense to do research on automatic summarization which fundamental work was focused on product reviews mining. Previous studies mainly focused on explicit features extraction whereas often ignored implicit features which hadn't been stated clearly but containing necessary information for analyzing comments. So how to quickly and accurately mine features from web reviews had important significance for summarization technology. In this paper, explicit features and “feature-opinion” pairs in the explicit sentences were extracted by Conditional Random Field and implicit product features were recognized by a bipartite graph model based on random walk algorithm. Then incorporating features and corresponding opinions into a structured text and the abstract was generated based on the extraction results. The experiment results demonstrated the proposed methods outpreferred baselines.
Keywords
bipartite graph;implicit features;Conditional Random Field;random walk algorithm;automatic summarization;
DOI:
http://doi.org/10.12928/telkomnika.v15i1.5099
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats