Integration Method of Local-global SVR and Parallel Time Variant PSO in Water Level Forecasting for Flood Early Warning System
Arief Andy Soebroto, Imam Cholissodin, Maria Tenika Frestantiya, Ziya El Arief
Abstract
Flood is one type of natural disaster that can’t be predicted, one of the main causes of flooding is the continuous rain (natural events). In terms of meteorology, the cause of flood is come from high rainfall and the high tide of the sea, resulting in increased the water level. Rainfall and water level analysis in each period, still not able to solve the existing problems. Therefore in this study, the proposed integration method of Parallel Time Variant PSO (PTVPSO) and Local-Global Support Vector Regression (SVR) is used to forecast water level. Implementation in this study combine SVR as regression method for forecast the water level, Local-Global concept take the role for the minimization for the computing time, while PTVPSO used in the SVR to obtain maximum performance and higher accurate result by optimize the parameters of SVR. Hopefully this system will be able to solve the existing problems for flood early warning system due to erratic weather.
Keywords
local global support vector regression; water level; parallel time variant particle swarm optimization;
DOI:
http://doi.org/10.12928/telkomnika.v16i3.6772
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats