Adaptive Control of Space Robot Manipulators with Task Space Base on Neural Network

Zhou Shuhua, Ye Xiaoping, Ji Xiaoming, Zhang Wenhui

Abstract


As are considered, the body posture is controlled and position cannot control, space manipulator system model is difficult to be set up because of disturbance and model uncertainty. An adaptive control strategy based on neural network is put forward. Neural network on-line modeling technology is used to approximate the system uncertain model, and the strategy avoids solving the inverse Jacobi matrix, neural network approximation error and external bounded disturbance are eliminated by variable structure control controller. Inverse dynamic model of the control strategy does not need to be estimated, also do not need to take the training process, globally asymptotically stable of the closed-loop system is proved based on the lyapunov theory. The simulation results show that the designed controller can achieve high control precision has the important value of engineering application.

Keywords


Neural network; Space robotic; Adaptive control; Variable structure control

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v12i2.72

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats