Performance of Modified S-Transform for Power Quality Disturbance Detection and Classification
Faridah Hanim M. Noh, Munirah Ab. Rahman, M. Faizal Yaakub
Abstract
Detection and classification of power quality (PQ) disturbances are an important consideration to electrical utility companies and many industrial customers so that diagnosis and mitigation of such disturbance can be implemented quickly. Power quality signal consists of stationary and non-stationary events which need a robust signal processing technique to analyse the signals. In this paper, Modified STransform (MST) was used to analyse single and multiple power quality signals. MST is a modified version of S-transform with improved time-frequency resolution. The power quality signals that are considered in this study are voltage swell, sag, interruption, harmonic, interharmonic, transient, sag plus harmonic and swell plus harmonics. The performance of the proposed method has been studied under noisy and unnoisy condition. Hard thresholding technique has been applied with MST while analysing noisy PQ signals. The result shows that MST is able to give higher classification rate with better time and frequency distribution (TFD) spectrum of the PQ disturbances.
Keywords
detection and classification, power quality disturbances, MST, time and frequency distribution
DOI:
http://doi.org/10.12928/telkomnika.v15i4.7230
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats