Identifying Citronella Plants From UAV Imagery Using Support Vector Machine

Candra Dewi, Achmad Basuki

Abstract


High-resolution imagery taken from Unmanned Aerial Vehicle (UAV) is now often used as an alternative in monitoring the agronomic plants compared to satellite imagery. This paper presents a method to identify Citronella among other plants based on UAV imagery. The method utilizes Support Vector Machine (SVM) to classify Citronella among other plants according to the extraction of texture feature. The implementation of the method was evaluated using two group of datasets: 1) consists of Citronella, Kaffir Lime, other green plants, vacant soil, and buildings, and 2) consists of Citronella and paddy rice plants. The evaluation results show that the proposed method can identify Citronella on the first group of datasets with an accuracy 94.23% and Kappa value 88.48%, whereas on the second group of datasets with an accuracy 100% and Kappa value 100%.

Keywords


citronella plants, UAV, SVM, texture features

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v16i4.7450

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats