Probabilistic Self-Organizing Maps for Text-Independent Speaker Identification
Ayoub Bouziane, Jamal Kharroubi, Arsalane Zarghili
Abstract
The present paper introduces a novel speaker modeling technique for text-independent speaker identification using probabilistic self-organizing maps (PbSOMs). The basic motivation behind the introduced technique was to combine the self-organizing quality of the self-organizing maps and generative power of Gaussian mixture models. Experimental results show that the introduced modeling technique using probabilistic self-organizing maps significantly outperforms the traditional technique using the classical GMMs and the EM algorithm or its deterministic variant. More precisely, a relative accuracy improvement of roughly 39% has been gained, as well as, a much less sensitivity to the model-parameters initialization has been exhibited by using the introduced speaker modeling technique using probabilistic self-organizing maps.
Keywords
speaker identification system; gaussian mixture model (GMM); probabilistic self-organizing maps; EM algorithm; deterministic annealing EM algorithm; the SOEM algorithm
DOI:
http://doi.org/10.12928/telkomnika.v16i1.7559
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats