Improving Sentiment Analysis of Short Informal Indonesian Product Reviews using Synonym Based Feature Expansion
M. Ali Fauzi, Ro'i Fahreza Nur Firmansyah, Tri Afirianto
Abstract
Sentiment analysis in short informal texts like product reviews is more challenging. Short texts are sparse, noisy, and lack of context information. Traditional text classification methods may not be suitable for analyzing sentiment of short texts given all those difficulties. A common approach to overcome these problems is to enrich the original texts with additional semantics to make it appear like a large document of text. Then, traditional classification methods can be applied to it. In this study, we developed an automatic sentiment analysis system of short informal Indonesian texts using Naïve Bayes and Synonym Based Feature Expansion. The system consists of three main stages, preprocessing and normalization, features expansion and classification. After preprocessing and normalization, we utilize Kateglo to find some synonyms of every words in original texts and append them. Finally, the text is classified using Naïve Bayes. The experiment shows that the proposed method can improve the performance of sentiment analysis of short informal Indonesian product reviews. The best sentiment classification performance using proposed feature expansion is obtained by accuracy of 98%.The experiment also show that feature expansion will give higher improvement in small number of training data than in the large number of them.
Keywords
product review, sentiment analysis, short text, feature expansion, classification
DOI:
http://doi.org/10.12928/telkomnika.v16i3.7751
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats