Genetic Optimization of Neural Networks for Person Recognition Based on the Iris
Abstract
This paper describes the application of modular neural network architectures for person recognition using the human iris image as a biometric measure. The iris database was obtained from the Institute of Automation of the Academy of Sciences China (CASIA). We show simulation results with the modular neural network approach, its optimization using genetic algorithms, and the integration with different methods, such as: the gating network method, type-1 fuzzy integration and optimized fuzzy integration using genetic algorithms. Simulation results show a good identification rate using fuzzy integrators and the best structure found by the genetic algorithm.
Full Text:
PDFReferences
Bastys A, Kranauskas J, Krüger V. Iris recognition by fusing different representations of multi-scale Taylor expansion, Computer Vision and Image Understanding. 2011; 115(6): 804-816.
Boddeti VN, Kumar BV. Extended depth of field iris recognition using unrestored wave front coded imagery, IEEE Trans. Syst., Man, Cybern. A, Syst., Humans. 2009; 40(3): 495-508.
Dey S, Samanta D, Fast and accurate personal identification based on iris biometric, International Journal of Biometrics. 2010; 2(3): 250-281.
Du Y, Arslanturk E, Zhou Z, Belcher C. Video-based noncooperative iris image segmentation, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2011; 41(1): 64-74.
Melin P, Castillo O. Hybrid Intelligent Systems for Pattern Recognition. Heidelberg: Springer-Verlag. 2005.
Chumklin S, Auephanwiriyakul S, Theera-Umpon N. Microcalcification detection in mammograms using interval type-2 fuzzy logic system with automatic membership function generation, 2010 Proceedings of the IEEE World Congress on Computational Intelligence (WCCI 2010). Barcelona. 2010; art. no. 5584896.
Gaxiola F, Melin P, López M. Modular neural networks for person recognition using the contour segmentation of the human iris biometric measurement, Studies in Computational Intelligence. 2010; 312(1): 137-153.
Sibai FN, Hosani HI, Naqbi RM, Dhanhani S, Shehhi S. Iris recognition using artificial neural networks, Expert Systems with Applications. 2011; 38(5): 5940-5946.
Zuo J, Schmid NA. On a methodology for robust segmentation of non ideal iris images, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 2010; 40(3): 703-718.
Hidalgo D, Castillo O Melin P. Type-1 and type-2 fuzzy inference systems as integration methods in modular neural networks for multimodal biometry and its optimization with genetic algorithms, Information Sciences. 2009; 179(13): 2123-2145.
Jarjes AA, Wang K, Mohammed GJ. A new Iris segmentation method based on improved snake model and angular integral projection, Research Journal of Applied Sciences, Engineering and Technology. 2011; 3(6): 558-568.
Kalka ND, Zuo J, Schmid NA, Cukic B. Estimating and fusing quality factors for iris biometric images, IEEE Trans. Syst., Man, Cybern., A, Syst., Humans. 2009; 40(3): 509-524.
Köse C, Ikibaşs C. A personal identification system using retinal vasculature in retinal fundus images, Expert Systems with Applications. 2011; 38(11): 13670-13681.
Liau HF, Isa D. Feature selection for support vector machine-based face-iris multimodal biometric system, Expert Systems with Applications. 2011; 38(9): 11105-11111.
Pimenta AHM, Camargo H. A. Interval type-2 fuzzy classifier design using genetic algorithms, 2010 IEEE World Congress on Computational Intelligence (WCCI), Barcelona. 2010: art. no. 5584520.
Lopez M, Melin P. Topology optimization of fuzzy systems for response integration in ensemble neural networks: The case of fingerprint recognition, Proceedings of the Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS). New York. 2008: art. no. 4531334.
Lopez M, Melin P, Castillo O. Comparative study of feature extraction methods of fuzzy logic type 1 and type-2 for pattern recognition system based on the mean pixels, Studies in Computational Intelligence. 2010; 312(1): 171-188.
Mat Isa NA, Mamat WMFW. Clustered-Hybrid Multilayer Perceptron network for pattern recognition application, Applied Soft Computing Journal. 2011; 11(1): 1457-1466.
Melin P. Interval type-2 fuzzy logic applications in image processing and pattern recognition, Proceedings of the 2010 IEEE International Conference on Granular Computing (GrC 2010). San Jose. 2010: 728-731.
Mendoza O, Melin P, Castillo O. Interval type-2 fuzzy logic and modular neural networks for face recognition applications, Applied Soft Computing Journal. 2009; 9(4): 1377-1387.
Perez C.A., Aravena C.M., Vallejos J.I., Estevez P.A., Held C.M. Face and iris localization using templates designed by particle swarm optimization, Pattern Recognition Letters. 2010; 31(9): 857-868.
Lopez M, Melin P, Castillo O. Optimization of response integration with fuzzy logic in ensemble neural networks using genetic algorithms, Studies in Computational Intelligence. 2008; 154(1): 129-150.
Sánchez D, Melin P. Modular neural network with fuzzy integration and its optimization using genetic algorithms for human recognition based on iris, ear and voice biometrics, Studies in Computational Intelligence. 2010; 312(1): 85-102.
Zeng J, Liu ZQ. Type-2 fuzzy hidden Markov models to phoneme recognition, Proceedings of the International Conference on Pattern Recognition (ICRP), Cambridge 2004: 192-195,.
Chua TW, Tan WW. Genetically evolved fuzzy rule based classifiers and application to automotive classification, Lecture Notes in Computer Science. 2008; 5361(1): 101-110.
Hosseini R, Dehmeshki J, Barman S, Mazinani M. Qanadli S., A genetic type-2 fuzzy logic system for pattern recognition in computer aided detection systems, Proceedings of 2010 IEEE World Congress on Computational Intelligence (WCCI 2010). Barcelona. 2010: art. no. 5584773.
Puhan NB, Sudha N, Sivaraman Kaushalram A. Efficient segmentation technique for noisy frontal view iris images using Fourier spectral density, Signal, Image and Video Processing. 2011; 5(1): 105-119.
Sanz J, Fernandez A, Bustince H, Herrera F. A genetic algorithm for tuning fuzzy rule based classification systems with interval valued fuzzy sets, 2010 IEEE World Congress on Computational Intelligence (WCCI), Barcelona. 2010: art. no. 5584097.
Fallahnezhad M, Moradi MH, Zaferanlouei S. A Hybrid Higher Order Neural Classifier for handling classification problems, Expert Systems with Applications. 2011; 38(1): 386-393.
Wade JJ, McDaid LJ, Santos JA, Sayers HM. SWAT: A spiking neural network training algorithm for classification problems, IEEE Transactions on Neural Networks. 2010; 21(11): 1817-1830.
Castillo O, Melin P. Type-2 Fuzzy Logic: Theory and Applications. Heidelberg: Springer-Verlag. 2008.
Karnik NN, Mendel JM. An Introduction to Type-2 Fuzzy Logic Systems. University of Southern California. Technical Report, 1998.
Chen X, Li Y, Harrison R, Zhang YQ. Type-2 fuzzy logic based classifier fusion for support vector machines, Applied Soft Computing Journal. 2008; 8(1): 1222-1231.
Farouk RM. Iris recognition based on elastic graph matching and Gabor wavelets, Computer Vision and Image Understanding. 2011; 115(8): 1239-1244.
Herman P, Prasad G, McGinnity TM. Support vector-enhanced design of a T2FL approach to motor imagery-related EEG pattern recognition, Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ 2007). London. 2007: art. no. 4295661.
Herman P, Prasad G, McGinnity TM. Design and on-line evaluation of type-2 fuzzy logic system based framework for handling uncertainties in BCI classification, Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS'08), Vancouver. 2008: 4242-4245.
Lucas LA, Centeno TM., Delgado MR. General type-2 fuzzy classifiers to land cover classification, Proceedings of the ACM Symposium on Applied Computing. Fortaleza, Ceará, Brazil. 2008; 1743-1747.
Madasu VK, Hanmandlu M, Vasikarla S. A novel approach for fuzzy edge detection using type II fuzzy sets, Proceedings of SPIE - The International Society for Optical Engineering. 2008; 7075(1): art. no. 70750I.
Mitchell HB. Pattern recognition using type-II fuzzy sets, Information Sciences. 2005; 170(1): 409-418.
Own CM. Switching between type-2 fuzzy sets and intuitionistic fuzzy sets: An application in medical diagnosis, Applied Intelligence. 2009; 31(1): 283-291.
Zhang WB, Hu HZ, Liu WJ. Rules extraction of interval type-2 fuzzy logic system based on fuzzy c-means clustering, Proceedings of the Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Hainan. 2007: 256-260.
Zheng G, Xiao J, Wang J, Wei Z. A similarity measure between general type-2 fuzzy sets and its application in clustering, Proceedings of the World Congress on Intelligent Control and Automation, Jinan. 2010: 6383-6387.
Kalka ND, Zuo J, Schmid NA, Cukic B. Estimating and fusing quality factors for iris biometric images, IEEE Trans. Syst., Man, Cybern., A, Syst., Humans. 2009; 40(3): 509-524.
Qun R, Baron L, Balazinski M, Type-2 Takagi-Sugeno-Kang fuzzy logic modeling using subtractive clustering, Proceedings of the Annual Conference of the North American Fuzzy Information Processing Society (NAFIPS), Toronto. 2010: art. no. 4216787.
Ren Q, Baron L, Balazinski M. High order type-2 TSK fuzzy logic system, Proceedings of the NAFIPS 2010 Conference, Toronto. 2010: art. no. 4531215.
Rhee FCH, Choi BI. Interval type-2 fuzzy membership function design and its application to radial basis function neural networks, Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ), London. 2007: art. no. 4295680.
Wu H, Mendel JM. Classification of battlefield ground vehicles based on the acoustic emissions, Studies in Computational Intelligence. 2010; 304(1): 55-77.
L Yu, J Xiao, G Zheng. Robust interval type-2 possibilistic c-means clustering and its application for fuzzy modeling, Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Tianjin. 2009: 360-365.
Ozkan I, Türkşen IB. Entropy assessment for type-2 fuzziness, Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ), Budapest. 2004: 1111-1115.
Ozkan I, Turksen B. MiniMax ε-stable cluster validity index for type-2 fuzziness, Proceedings of the NAFIPS 2010 Conference, Toronto. 2010: art. no. 5548183.
Phong PA, Thien KQ. Classification of cardiac arrhythmias using interval type-2 TSK fuzzy system, Proceedings of the 1st International Conference on Knowledge and Systems Engineering, Hanoi. 2009: 1-6.
Qin K, Kong L, Liu Y, Xiao Q. Sea surface temperature clustering based on type-2 fuzzy theory, Proceedings of the 18th International Conference on Geoinformatics, Beijing. 2010: art. no. 5567484.
Santiago-Sanchez K, Reyes-Garcia CA, Gomez-Gil P. Type-2 fuzzy sets applied to pattern matching for the classification of cries of infants under neurological risk, Lecture Notes in Computer Science. 2009; 5754(1): 201-210.
Sharma P, Bajaj P. Performance analysis of vehicle classification system using type-1 fuzzy, adaptive neuro-fuzzy and type-2 fuzzy inference system, Proceedings of the 2nd International Conference on Emerging Trends in Engineering and Technology (ICETET), Nagpur. 2009: 581-584.
Sharma P, Bajaj P. Accuracy comparison of vehicle classification system using interval type-2 fuzzy inference system, Proceedings of the 3rd International Conference on Emerging Trends in Engineering and Technology (ICETET), Goa. 2010: 85-90.
Tan WW, Foo CL, Chua TW. Type-2 fuzzy system for ECG arrhythmic classification, Proceedings of IEEE International Conference on Fuzzy Systems (FUZZ), London. 2007: art. no. 4295478.
Database of Human Iris. Institute of Automation of Chinese Academy of Sciences (CASIA). Available on the Web page: http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp (2011)
Tizhoosh HR. Image thresholding using type II fuzzy sets, Pattern Recognition. 2005; 38(1): 2363-2372.
DOI: http://doi.org/10.12928/telkomnika.v10i2.800
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604