Multi-class K-support Vector Nearest Neighbor for Mango Leaf Classification 
	Eko Prasetyo, R. Dimas Adityo, Nanik Suciati, Chastine Fatichah 
	
			
		Abstract 
		
		K-Support Vector Nearest Neighbor (K-SVNN) is one of methods for training data reduction that works only for binary class. This method uses Left Value (LV) and Right Value (RV) to calculate Significant Degree (SD) property. This research aims to modify the K-SVNN for multi-class training data reduction problem by using entropy for calculating SD property. Entropy can measure the impurity of data class distribution, so the selection of the SD can be conducted based on the high entropy. In order to measure performance of the modified K-SVNN in mango leaf classification, experiment is conducted by using multi-class Support Vector Machine (SVM) method on training data with and without reduction. The experiment is performed on 300 mango leaf images, each image represented by 260 features consisting of 256 Weighted Rotation- and Scale-invariant Local Binary Pattern features with average weights (WRSI-LBP-avg) texture features, 2 color features, and 2 shape features. The experiment results show that the highest accuracy for data with and without reduction are 71.33% and 71.00% respectively. It is concluded that K-SVNN can be used to reduce data in multi-class classification problem while preserve the accuracy. In addition, performance of the modified K-SVNN is also compared with two other methods of multi-class data reduction, i.e. Condensed Nearest Neighbor Rule (CNN) and Template Reduction KNN (TRKNN). The performance comparison shows that the modified K-SVNN achieves better accuracy.
		
		 
	
			
		Keywords 
		
		support vector machine, k-support vector nearest neighbor, data reduction, mango leaves, entropy
		
		 
	
				
			
	
	
							
		
		DOI: 
http://doi.org/10.12928/telkomnika.v16i4.8482 	
Refbacks 
				There are currently no refbacks. 
	 
				
		This work is licensed under a 
Creative Commons Attribution-ShareAlike 4.0 International License .
	
TELKOMNIKA Telecommunication, Computing, Electronics and Control 1693-6930 , e-ISSN: 2302-9293 Universitas Ahmad Dahlan , 4th Campus+62  274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div>  View TELKOMNIKA Stats