Spectral-based Features Ranking for Gamelan Instruments Identification using Filter Techniques

Aris Tjahyanto, Yoyon K Suprapto, Diah P Wulandari

Abstract


 In this paper, we describe an approach of spectral-based features ranking for Javanese gamelan instruments identification using filter techniques. The model extracted spectral-based features set of the signal using Short Time Fourier Transform (STFT). The rank of the features was determined using the five algorithms; namely ReliefF, Chi-Squared, Information Gain, Gain Ratio, and Symmetric Uncertainty. Then, we tested the ranked features by cross validation using Support Vector Machine (SVM). The experiment showed that Gain Ratio algorithm gave the best result, it yielded accuracy of 98.93%.


Full Text:

PDF

References


P Langley. Selection of Relevant Features in Machine Learning. Proc. of the AAAI Fall Symposium on Relevance. 1994.

M Dash, H Liu. Feature Selection for Classification. Intelligent Data Analysis. 1997; 1: 131–156.

I Guyon, A. Elisseeff. An introduction to Variable and Feature Selection. J. Mach. Learn. Res. 2003; 3:1157–1182.

Y Sun. Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications. Pattern Analysis and Machine Int., IEEE Trans. On. 2007; 29:1035–1051.

Y Says, I N Inza, P Larranaga. A Review of Feature Selection Techniques in Bioinformatics. Bioinformatics. 2007; 23(19): 2507–2517.

O Lartillot, P Toiviainen. A MATLAB Toolbox for Musical Feature Extraction from Audio. Proc. Int. Conference on Digital Audio Effects the 10th. Bordeaux, France: DAFX. September 2007; 1–8.

A Tjahyanto, Y K Suprapto, M H Purnomo, D P Wulandari. FFT-based Features Selection for Javanese Music Note and Instrument Identification using Support Vector Machines. Proc. IEEE Int. Conf. on Comp. Science and Automation Eng. CSAE. Zhangjiajie, China. May 2012; 439–443.

J C Brown, B Zhang. Musical Frequency Tracking using the Methods of Conventional and ”Narrowed” Autocorrelation. Journal Acoustical Society of America. 1991; 89(5): 2346–2354.

Y K Suprapto, M Hariadi, M H Purnomo. Traditional Music Sound Extraction Based on Spectral Density Model using Adaptive Cross-correlation for Automatic Transcription. IAENG International Journal of Computer Science. 2011; 38(2):1–8.

Y K Suprapto, D P Wulandari, A Tjahyanto. Saron Music Transcription using LPF-cross Correlation. Journal of Theoretical and Applied Information Technology. 2011; 32(1): 71–79.

K D Martin, Y E Kim. Musical Instrument Identification: A Pattern-recognition Approach. 136th Meeting of the Acoustical Society of America. ASA. Oct 1998; 1–11.

S Essid, G Richard, B David. Instrument Recognition in Polyphonic Music Based on Automatic Taxonomies. IEEE Trans. on Audio, Speech, and Lang. Proc. 2006; 14(1): 68–80.

V Vapnik. Statistical Learning Theory. New York: Wiley, 1998.

C J C Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery. 1998; 2(2): 121–167.

T Joachims. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Proceedings of ECML-98, 10th European Conference on Machine Learning, C. Nedellec and C. Rouveirol, Eds., Chemnitz, DE: Springer Verlag, Heidelberg, DE. 1998; 137–142.

I Kotsia, I Pitas. Real Time Facial Expression Recognition from Image Sequences using Support Vector Machines. Proc. of the IEEE Int. Conference on Image Processing. 2005; 2: II–966–9.

I Guyon, J Weston, S Barnhill, V Vapnik. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002; 46(1): 389–422.

L Wang, J Zhu, H Zou. Hybrid Huberized Support Vector Machines for Microarray Classification and Gene Selection. Bioinformatics. 2008; 24(3): 412–419.

Sumarsam. Cultural Interaction and Musical Development in Central Java. Chicago: The University of Chicago Press. 1992, 1995.

W A Purwadi. Seni Karawitan Jawa Ungkapan Keindahan dalam Musik Gamelan. Yogyakarta: Hanan Pustaka. 2006.

A Klapuri. Signal Processing Methods for the Automatic Transcription of Music. Ph.D. Dissertation. Tampere University of Technology. March 2004.

A Tjahyanto, Y K Suprapto, D P Wulandari. Model Analysis-By-Synthesis Aplikasi Pembangkit Suara Gamelan Sintetik. Proc. Sem.Nas. Aplikasi Teknologi Informasi. SNATI. Yogyakarta: JTI UII, June 2011.

A Krishnaswamy. Application of Pitch Tracking to South Indian Classical Music. Proc. International Conference on Multimedia and Expo. 2003; 3: 557–560.

G Hu, D Wang. Auditory Segmentation based on Onset and Offset Analysis. Trans. Audio, Speech and Lang. 2007; 25(2): 396–405.

J P Bello, C Duxbury, M Davies, M Sandler. On the Use of Phase and Energy for Musical Onset Detection in the Complex Domain. Signal Processing Letters, IEEE. 2004; 11(6): 553–556.

A Tjahyanto, Y K Suprapto, M H Purnomo, D P Wulandari. Features Selection for Gamelan Instrument Identification Using RELIEF-F and Support Vector Machines. Proc. The 13th Seminar on Int. Tech. and Its App., Electrical Eng., ITS SITIA, May 2012.

J P Bello. Towards the Automated Analysis of Simple Polyphonic Music: A Knowledge-based Approach. Ph.D. Dissertation. Queen Mary, University of London. January 2003.

A Klapuri. Sound Onset Detection by Applying Psychoacoustic Knowledge. Proceedings of the Acoustics, Speech, and Signal Processing on 1999 IEEE International Conference - ICASSP. Washington, DC, USA: IEEE Computer Society. 1999; 06: 3089–3092.

S Z Li. Content-Based Audio Classification and Retrieval using the Nearest Feature Line Method. IEEE Transaction on Speech and Audio Processing. 2000; 8(5): 619–625.

L T DeCarlo. On the Meaning and Use of Kurtosis. Psychological Methods. 1997; 2(3): 292–307.

E Wold, T Blum, D Keislar, J Wheaton. Content-based Classification, Search, and Retrieval of Audio. IEEE Multimedia. 1996; 3(3): 27–36.

W Chu, B Champagne. A Noise-Robust FFT-Based Auditory Spectrum With Application in Audio Classification. IEEE Transactions on Audio, Speech, and Lang. Proc. 2008; 16(1): 137–150.

E Scheirer, M Slaney. Construction and Evaluation of a Robust Multifeature Speech/Music Discriminator. Proc. IEEE Int. Conf. Acoustic, Speech, Signal, Process. 1997; 2: 1331–1334.

P Bermejo, L dela Ossa, J A Gamez, J M Puerta. Fast Wrapper Feature Subset Selection in High-dimensional Datasets by means of Filter re-ranking. Knowledge-Based Systems. 2012; 25: 35–44.

I H Witten, E Frank. Data Mining - Practical Machine Learning Tools and Techniques, 2nd ed. San Francisco, CA: Morgan Kaufman. 2005.

K Kira, L A Rendell. A Practical Approach to Feature Selection. Proceedings of the 9th. Int. Conf. on Machine Learning. Morgan Kaufmann. 1992; 249–256.

M Robnik-Sikonja, I Kononenko. Theoretical and Empirical Analysis of Relief-F and R-Relief-F. Machine Learning Journal. 2003; 53: 23–69.

R L Plackett, K Pearson. The Chi-Squared, Test International Statistical Rev. 1983; 51(1): 59–72.

Y Yang, J O Pedersen. A Comparative Study on Feature Selection in Text Categorization. Proceedings of the Fourteenth International Conference on Machine Learning, ICML ’97. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 1997; 412–420.

M M Valdivia, M D Galiano, A M Raez, L U Lopez. Using Information Gain to Improve Multi-modal Information Retrieval Systems. Inf. Processing and Management. 2008; 44: 1146–1158.

J Quinlan. C4.5: Programs for Machine Learning. San Francisco, CA: Morgan Kaufman, 1993.

J Chen, H Huang, F Tian, S Tian. A Selective Bayes Classifier for Classifying Incomplete Data based on Gain Ratio. Knowledge-Based Systems. 2008; 21: 530–534.

W Altidor, T M Khoshgoftaar, J V Hulse. Robustness of Filter-based Feature Ranking: A Case Study. Proc. of the Twenty-Fourth International Florida Artificial Intelligence Research Society Conf., 2011.

C C Chang, C J Lin. LIBSVM: A Library for Support Vector Machines, Tech. Rep., 2011. Software available at http://www.csie.ntu.edu.tw/˜cjlin/.

O Chapelle, V Vapnik, O Bousquet. Choosing Multiple Parameters for Support Vector Machines. Machine Learning. 2002; 46: 131–159.

Y K Suprapto, I K E Purnama, M Hariadi, M H Purnomo. Sound Modeling of Javanese Traditional Music Instrument. Proc. Int. Conf. on Instrumentation, Communications, Information Technology, and Biomedical Engineering, ICICI-BME. Bandung: ITB. 2009; 1–6.




DOI: http://doi.org/10.12928/telkomnika.v11i1.895

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats