Reinforced Island Model Genetic Algorithm to Solve University Course Timetabling

Alfian Akbar Gozali, Shigeru Fujimura

Abstract


The University Course Timetabling Problem (UCTP) is a scheduling problem of assigning teaching event in certain time and room by considering the constraints of university stakeholders such as students, lecturers, departments, etc. This problem becomes complicated for universities which have immense number of students and lecturers. Therefore, a scalable and reliable timetabling solver is needed. However, current solvers and generic solution failed to meet several specific UCTP. Moreover, some universities implement student sectioning problem with individual student specific constraints. This research introduces the Reinforced Asynchronous Island Model Genetic Algorithm (RIMGA) to optimize the resource usage of the computer. RIMGA will configure the slave that has completed its process to helping other machines that have yet to complete theirs. This research shows that RIMGA not only improves time performance in the computational execution process, it also oers greater opportunity to escape the local optimum trap than previous model.

Keywords


university course timetabling problem; island model; genetic algorithm;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v16i6.9691

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

Statcounter

View TELKOMNIKA Stats