Adaptive Control for Robotic Manipulators base on RBF Neural Network

Ma Jing Ma Jing, Zhang Wenhui, Zhu Haiping

Abstract


An adaptive neural network controller is brought forward by the paper to solve trajectory tracking problems of robotic manipulators with uncertainties.  The  first  scheme consists of  a PD feedback  and  a  dynamic  compensator  which is  composed by  neural  network controller and  variable  structure controller.  Neutral network controller is designed to adaptive learn and compensate the unknown uncertainties, variable   structure controller is designed to eliminate approach errors of neutral network. The adaptive weight learning algorithm of neural network is designed to ensure online real-time adjustment, offline learning phase is not need; Global asymptotic stability (GAS) of system base on Lyapunov theory is analysised to ensure the convergence of the algorithm. The simulation results show that the kind of the control scheme is effective and has good robustness.


References


Yang J M,Kim J H. Sliding Mode Control for Trajectory of Nonholonomic Wheeled Mobile Robots. IEEE Transactions on Robotics and Automation. 1999; 15(4): 578-587.

Sun FC, Sun ZQ, Chen Y, Zhang RJ. Neural adaptive tracking controller for robot manipulators with unknown dynamics. IEEE Proceedings on Control Theory and Applications. 2000; 147: 366-370.

Zhang WH, Qi NM, Ma J, et al. Neural integrated control for a free-floating space robot with suddenly changing parameters. Sci China Inf Sci, 2011, 54(10): 2091-2099.

Psillakis H E, Alexandridis A T.Adaptive neural motion control of n-link robot manipulators subject to unknown disturbances and stochastic perturbations. Pro. Inst. Electr. Eng, Control Theory Appl, 2006; 153(2):127-138.

Lewis F L, Kim Y H. Intelligent optimal control of robotic manipulators using neural networks. Automatica, 2000; 36 (9):1355- 1364.

HONG Z B, CHEN L.Self-learning control of space flexible manipulator base on gauss function fuzzy neural network .engineering mechanics in Chinese. 2008; 29(6):172-177.

Zhang X D, Jia Q X, Sun H X, Chu M. The Research of Space Robot Flexible Joint Trajectory Control. Journal of Astronautics in Chinese, 2008; 29(6):1865-1869.

Wang S D, Lin C K. Adaptive control of robot manipulator using fuzzy compensator.Fuzzy Sets Syst, 2000;110(3):351-363.

Lin C K.Non-singular terminal sliding model control of robot manipulators using fuzzy wavelet networks.IEEE Trans. Fuzzy Syst, 2009; 160(12):1765-1786.

Yoo B K, Ham W C. Adaptive control of robot manipulator using fuzzy compensator .IEEE Trans.Fuzzy Syst, 2000;8(2):186-199.

Lin C K.H∞ reinforcement learning control of robot manipulators using fuzzy wavelet networks .Fuzzy Sets Syst, 2009; 160(12): 1765 -1786.

Wang C H, Tsai C H, Lin W S. Robust fuzzy model-following control of robot manipulators. IEEE Trans. Fuzzy Syst, 2000; 8 (4):462-469.

Chen L. Adaptive and robust composite control of coordinated motion of space robot system with prismatic joint. Proceedings of the 4th world Congress on Intelligent Control and Automation .Shanghai, China, 2002; 45:1255 – 1259.

Man Z, Yu XH, Eshraghian K, Palaniswami M. A robust adaptive sliding mode tracking control using an RBF neural network for robotic manipulators. IEEE Inter.Conf.Neural Networks, 1995; 21:203-206,

Karuppanan PitchaiVijaya, KamalaKanta Mahapatra.Adaptive-Fuzzy Controller Based Shunt Active Filter for Power Line Conditioners. TELKOMNIKA, 2011; 9(2): 203-210.

Gu Y L, Xu Y S. A normal form augmentation approach to adaptive control of space robot systems. Proceedings of the IEEE Int . Conf. on Robotics and Automation, Atlanta, USA. 1993; 32:731- 737.

Karakasoglu A, Sundareshan M K. A Recurrent Neural Network Based Adaptive Variable Structure Model-Following Control of Robotic Manipulator. Automatic, 1995; 10(7):1495-1507.

Kim Y H and Lewis F L.Neural network output feedback control of robot manipulators .IEEE Trans on Robotics and Automation, 1999;15(2):301-309.

Xie J, Liu G L, Yan S Z, et al. Study on neural network adaptive control method for uncertain space manipulators. Journal of Astronautics in Chinese.2010; 31(1):123- 129.

Oscar Castillo, Patricia Melin.Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach. Appl. Soft Comput, 2003; 3(4): 363-378.




DOI: http://doi.org/10.12928/telkomnika.v11i3.986

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats