Image Analysis using Color Co-occurrence Matrix Textural Features for Predicting Nitrogen Content in Spinach

Yusuf Hendrawan, Indah Mustika Sakti, Yusuf Wibisono, Muchnuria Rachmawati, Sandra Malin Sutan

Abstract


This study aimed to determine the nitrogen content of spinach leaves by using computer imaging technology. The application of Color Co-occurrence Matrix (CCM) texture analysis was used to recognize the pattern of nitrogen content in spinach leaves. The texture analysis consisted of 40 CCM textural features constructed from RGB and grey colors. From the 40 textural features, the best features-subset was selected by using features selection method. Features selection method can increase the accuracy of image analysis using ANN model to predict nitrogen content of spinach leaves. The combination of ANN with Ant Colony Optimization resulted in the most optimal modelling with mean square error validation value of 0.0000083 and the R2 testing-set data = 0.99 by using 10 CCM textural features as the input of ANN. The computer vision method using ANN model which has been developed can be used as non-invasive sensing device to predict nitrogen content of spinach and for guiding farmers in the accurate application of their nitrogen fertilization strategies using low cost computer imaging technology.


Keywords


texture; ANN; nitrogen; spinach; bio-inspired optimization;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v16i6.10326

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats