Data stream mining techniques: a review

Eiman Alothali, Hany Alashwal, Saad Harous

Abstract


A plethora of infinite data is generated from the Internet and other information sources. Analyzing this massive data in real-time and extracting valuable knowledge using different mining applications platforms have been an area for research and industry as well. However, data stream mining has different challenges making it different from traditional data mining. Recently, many studies have addressed the concerns on massive data mining problems and proposed several techniques that produce impressive results. In this paper, we review real time clustering and classification mining techniques for data stream. We analyze the characteristics of data stream mining and discuss the challenges and research issues of data steam mining. Finally, we present some of the platforms for data stream mining.

Keywords


classification; clustering; data stream mining; real-time data mining;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v17i2.11752

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats