K-means and bayesian networks to determine building damage levels
Devni Prima Sari, Dedi Rosadi, Adhitya Ronnie Effendie, Danardono Danardono
Abstract
Many troubles in life require decision-making with convoluted processes because they are caused by uncertainty about the process of relationships that appear in the system. This problem leads to the creation of a model called the Bayesian Network. Bayesian Network is a Bayesian supported development supported by computing advancements. The Bayesian network has also been developed in various fields. At this time, information can implement Bayesian Networks in determining the extent of damage to buildings using individual building data. In practice, there is mixed data which is a combination of continuous and discrete variables. Therefore, to simplify the study it is assumed that all variables are discrete in order to solve practical problems in the implementation of theory. Discretization method used is the K-Means clustering because the percentage of validity obtained by this method is greater than the binning method.
Keywords
bayesian network; buildings damage; discretization; K-Means clustering; risk of earthquakes;
DOI:
http://doi.org/10.12928/telkomnika.v17i2.11756
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats