A total variation-undecimated wavelet approach to chest radiograph image enhancement
Matilda Wilson, James B. H. Acquah, Anthony Y. Aidoo
Abstract
Most often medical images such as X-Rays have a low dynamic range and many of their targeted features are difficult to identify. Intensity transformations that improve image quality usually rely onwavelet denoising and enhancement typically use the technique of thresholding to obtain better quality medical images. A disadvantage of wavelet thresholding is that even though it adequately removes noise in an image, it introduces unwanted artifacts into the image near discontinuities. We utilize a total variation method and an undecimated wavelet image enhancing algorithm for improving the image quality of chest radiographs. Our approach achieves a high level chest radiograph image deniosing in lung nodules detection while preserving the important features. Moreover, our method results in a high image sensitivity that reduces the average number of false positives on a test set of medical data.
Keywords
chest radiograph; image enhancement; total variation; undecimated wavelet transform;
DOI:
http://doi.org/10.12928/telkomnika.v17i4.11911
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats