A total variation-undecimated wavelet approach to chest radiograph image enhancement

Matilda Wilson, James B. H. Acquah, Anthony Y. Aidoo

Abstract


Most often medical images such as X-Rays have a low dynamic range and many of their targeted features are difficult to identify. Intensity transformations that improve image quality usually rely onwavelet denoising and enhancement typically use the technique of thresholding to obtain better quality medical images. A disadvantage of wavelet thresholding is that even though it adequately removes noise in an image, it introduces unwanted artifacts into the image near discontinuities. We utilize a total variation method and an undecimated wavelet image enhancing algorithm for improving the image quality of chest radiographs. Our approach achieves a high level chest radiograph image deniosing in lung nodules detection while preserving the important features. Moreover, our method results in a high image sensitivity that reduces the average number of false positives on a test set of medical data.


Keywords


chest radiograph; image enhancement; total variation; undecimated wavelet transform;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v17i4.11911

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats