A hybrid algorithm for wave-front corrections applied to satellite-to-ground laser communication

Mohammed Senan Al Gobi, Djamel Benatia, Mouadh Bali

Abstract


Laser communications hold accurate data rate for ground satellite links. The laser beam is transmitted through the atmosphere. The clear-air turbulence induces a number of phase distortions that damage wave-front. Adaptive optics (AO) treats wave front correction. The nature of AO systems is iterative; it can be integrated in metaheuristic algorithms such as genetic algorithm (GA). This paper presents improved version of algorithm for wave-front corrections. The improved algorithm is based on genetic algorithm (GA) and adaptive optics approach (OA). It is implemented in a computer simulation model called object-oriented matlab adaptive optics (OOMAO). The optimisation process involves best possible GA parameters as a function of population size, iteration count, and the actuators’ voltage intervals. Results show that the application of GA improves the performance of AO in wave-front corrections and the communication between satellite-to-ground laser links as well.

Keywords


adaptive optics (AO), genetic algorithm; object-oriented matlab adaptive optics (OOMAO); satellite-to-ground; wave-front correction;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i3.12960

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats