Deep learning model for thorax diseases detection 
	Ghada A. Shadeed, Mohammed A. Tawfeeq, Sawsan M. Mahmoud 
	
			
		Abstract 
		
		Despite the availability of radiology devices in some health care centers, thorax diseases are considered as one of the most common health problems, especially in rural areas. By exploiting the power of the Internet of things and specific platforms to analyze a large volume of medical data, the health of a patient could be improved earlier. In this paper, the proposed model  is based on pre-trained ResNet-50  for diagnosing thorax diseases. Chest x-ray images are cropped to extract the rib cage part from the chest radiographs. ResNet-50 was re-train on Chest x-ray14 dataset where a chest radiograph images are inserted into the model to determine if the person is healthy or not. In the case of an unhealthy patient, the model can classify the disease into one of the fourteen chest diseases. The results show the ability of ResNet-50 in achieving impressive performance in classifying thorax diseases.
 
	
			
		Keywords 
		
		chest radiography; deep learning; Internet of Things; ResNet-50; thorax diseases;
		
		 
	
				
			
	
	
							
		
		DOI: 
http://doi.org/10.12928/telkomnika.v18i1.12997 	
Refbacks 
				There are currently no refbacks. 
	 
				
		This work is licensed under a 
Creative Commons Attribution-ShareAlike 4.0 International License .
	
TELKOMNIKA Telecommunication, Computing, Electronics and Control 1693-6930 , e-ISSN: 2302-9293 Universitas Ahmad Dahlan , 4th Campus+62  274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div>  View TELKOMNIKA Stats