New approach to the identification of the easy expression recognition system by robust techniques (SIFT, PCA-SIFT, ASIFT and SURF)
Ahmed Chater, Abdelali Lasfar
Abstract
In recent years, facial recognition has been a major problem in the field of computer vision, which has attracted lots of interest in previous years because of its use in different applications by different domains and image analysis. Which is based on the extraction of facial descriptors, it is a very important step in facial recognition. In this article, we compared robust methods (SIFT, PCA-SIFT, ASIFT and SURF) to extract relevant facial information with different facial posture variations (open and unopened mouth, glasses and no glasses, open and closed eyes). The simulation results show that the detector (SURF) is better than others at finding the similarity descriptor and calculation time. Our method is based on the normalization of vector descriptors and combined with the RANSAC algorithm to cancel outliers in order to calculate the Hessian matrix with the objective of reducing the calculation time. To validate our experience, we tested four facial images databases containing several modifications. The results of the simulation show that our method is more efficient than other detectors in terms of speed of recognition and determination of similar points between two images of the same face, one belonging to the base of the text and the other one to the base driven by different modifications. This method, which can be applied on a mobile platform to analyze the content of simple images, for example, to detect driver fatigue, human-machine interaction, human-robot. Using descriptors with properties important for good accuracy and real-time response.
Keywords
Face recognition; feature matching; four database; normalization of feature; RANSAC with SURF; recognition rate;
DOI:
http://doi.org/10.12928/telkomnika.v18i2.13726
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats