Sentiment analysis by deep learning approaches

Sreevidya P., O. V. Ramana Murthy, S. Veni

Abstract


We propose a model for carrying out deep learning based multimodal sentiment analysis. The MOUD dataset is taken for experimentation purposes. We developed two parallel text based and audio basedmodels and further, fused these heterogeneous feature maps taken from intermediate layers to complete thearchitecture. Performance measures–Accuracy, precision, recall and F1-score–are observed to outperformthe existing models.


Keywords


bimodal; CNN layers; MOUD; multimodal; word embeddings;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i2.13912

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats