Sentiment analysis by deep learning approaches
Sreevidya P., O. V. Ramana Murthy, S. Veni
Abstract
We propose a model for carrying out deep learning based multimodal sentiment analysis. The MOUD dataset is taken for experimentation purposes. We developed two parallel text based and audio basedmodels and further, fused these heterogeneous feature maps taken from intermediate layers to complete thearchitecture. Performance measures–Accuracy, precision, recall and F1-score–are observed to outperformthe existing models.
Keywords
bimodal; CNN layers; MOUD; multimodal; word embeddings;
DOI:
http://doi.org/10.12928/telkomnika.v18i2.13912
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats