Face recognition based on curvelets, invariant moments features and SVM
Mohammed Talal Ghazal, Karam Abdullah
Abstract
Recent studies highlighted on face recognition methods. In this paper, a new algorithm is proposed for face recognition by combining Fast Discrete Curvelet Transform (FDCvT) and Invariant Moments with Support vector machine (SVM), which improves rate of face recognition in various situations. The reason of using this approach depends on two things. first, Curvelet transform which is a multi-resolution method, that can efficiently represent image edge discontinuities; Second, the Invariant Moments analysis which is a statistical method that meets with the translation, rotation and scale invariance in the image. Furthermore, SVM is employed to classify the face image based on the extracted features. This process is applied on each of ORL and Yale databases to evaluate the performance of the suggested method. Experimentally, the proposed method results show that our system can compose efficient and reasonable face recognition feature, and obtain useful recognition accuracy, which is able to face and side-face states detection of persons to decrease fault rate of production.
Keywords
curvelet; face recognition; invariant moment; support vector machine;
DOI:
http://doi.org/10.12928/telkomnika.v18i2.14106
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats