Classification of pneumonia from X-ray images using siamese convolutional network

Kennard Alcander Prayogo, Alethea Suryadibrata, Julio Christian Young

Abstract


Pneumonia is one of the highest global causes of deaths especially for children under 5 years old. This happened mainly because of the difficulties in identifying the cause of pneumonia. As a result, the treatment given may not be suitable for each pneumonia case. Recent studies have used deep learning approaches to obtain better classification within the cause of pneumonia. In this research, we used siamese convolutional network (SCN) to classify chest x-ray pneumonia image into 3 classes, namely normal conditions, bacterial pneumonia, and viral pneumonia. Siamese convolutional network is a neural network architecture that learns similarity knowledge between pairs of image inputs based on the differences between its features. One of the important benefits of classifying data with SCN is the availability of comparable images that can be used as a reference when determining class. Using SCN, our best model achieved 80.03% accuracy, 79.59% f1 score, and an improved result reasoning by providing the comparable images.

Keywords


chest x-ray; image classification; pneumonia; siamese convolutional network;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i3.14751

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats