PSO optimization on backpropagation for fish catch production prediction

Yuslena Sari, Eka Setya Wijaya, Andreyan Rizky Baskara, Rico Silas Dwi Kasanda

Abstract


Global climate change is an issue that is enough to grab the attention of the world community. This is mainly because of the impact it has on human life. The impact that is felt also occurs in waters on the South Kalimantan region. This is of course can disrupt the productivity of fish in the marine waters of South Kalimantan. This study aims to make fish catch production prediction models based on climate change in the South Kalimantan Province because the amount of productivity of marine fish has fluctuated. This study uses climate data as input and fish production as output which is divided into two, namely training and testing data. Then the prediction is conducted using Backpropagation method combined with Particle Swarm Optimization method. The results of the study produced a prediction model with RMSE of 0.0909 with a combination of parameters used, namely, C1: 2, C2: 2, w: 0.7, learning rate: 0.5, Momentum: 0.1, Particles: 5, and epoch: 500. While the model used when predicting testing data produces RMSE of 0.1448.


Keywords


backpropagation; climate change; fish production prediction; particle swarm optimization; RMSE;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i2.14826

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats