Brain-computer interface of focus and motor imagery using wavelet and recurrent neural networks
Esmeralda C. Djamal, Rifqi D. Putra
Abstract
Brain-computer interface is a technology that allows operating a device without involving muscles and sound, but directly from the brain through the processed electrical signals. The technology works by capturing electrical or magnetic signals from the brain, which are then processed to obtain information contained therein. Usually, BCI uses information from electroencephalogram (EEG) signals based on various variables reviewed. This study proposed BCI to move external devices such as a drone simulator based on EEG signal information. From the EEG signal was extracted to get motor imagery (MI) and focus variable using wavelet. Then, they were classified by recurrent neural networks (RNN). In overcoming the problem of vanishing memory from RNN, was used long short-term memory (LSTM). The results showed that BCI used wavelet, and RNN can drive external devices of non-training data with an accuracy of 79.6%. The experiment gave AdaDelta model is better than the Adam model in terms of accuracy and value losses. Whereas in computational learning time, Adam's model is faster than AdaDelta's model.
Keywords
brain-computer interface; EEG signal; focus; motor imagery; recurrent neural networks; wavelet;
DOI:
http://doi.org/10.12928/telkomnika.v18i5.14899
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats