Fine-grained or coarse-grained? Strategies for implementing parallel genetic algorithms in a programmable neuromorphic platform

Indar Sugiarto, Steve Furber

Abstract


Genetic Algorithm (GA) is one of popular heuristic-based optimization methods that attracts engineers and scientists for many years. With the advancement of multi- and many-core technologies, GAs are transformed into more powerful tools by parallelising their core processes. This paper describes a feasibility study of implementing parallel GAs (pGAs) on a SpiNNaker. As a many-core neuromorphic platform, SpiNNaker offers a possibility to scale-up a parallelised algorithm, such as a pGA, whilst offering low power consumption on its processing and communication overhead. However, due to its small packets distribution mechanism and constrained processing resources, parallelising processes of a GA in SpiNNaker is challenging. In this paper we show how a pGA can be implemented on SpiNNaker and analyse its performance. Due to inherently numerous parameter and classification of pGAs, we evaluate only the most common aspects of a pGA and use some artificial benchmarking test functions. The experiments produced some promising results that may lead to further developments of massively parallel GAs on SpiNNaker.


Keywords


network on chip; neuromorphic computing; parallel genetic algorithms; SpiNNaker;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v19i1.15026

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats