An iterative algorithm for color space optimization on image segmentation

Mourad Moussa

Abstract


This paper proposes, a novel hybrid color component (HCC) issued from amounts number of color space with iterative manner, in fact traditional images obtained by RGB sensor weren’t the effective way in image processing applications, for this purpose we have propose a supervised algorithm to substitute RGB level by hybrid and suitable color space at the aim to make well representation of the handled amounts of data, this step is extremely important because the obtained results it will be injected in many future studies like tracking, classification, steganography and cryptography. The second part of this paper consists to segment image coded in hybrid color space already selected, the used algorithm is inspired from kernel function where statistical distribution was used to model background and Bayes rule to make decision of the membership of each pixel, in this research topics we have extended this algorithm in the aim to improve compactness of these distribution. Cauchy background modeling and subtraction is used, and shows the high accuracy of automatic player detection.

Keywords


color space; data fusion; image segmentation; iterative algorithm; statistical distribution;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v19i1.15122

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats