Predictions on wheat crop yielding through fuzzy set theory and optimization techniques
Julio Barón Velandia, Norbey Danilo Muñoz Cañón, Brayan Leonardo Sierra Forero
Abstract
Agricultural field’s production is commonly measured through the performance of the crops in terms of sow amount, climatology, and the type of crop, among other. Therefore, prediction on the performance of the crops canaid cultivators to make better informed decisions and help the agricultural field. This research work presents a prediction on wheat crop using the fuzzy set theory and the use of optimization techniques, in both; traditional methods and evolutionary meta-heuristics. The performance prediction in this research has its core on the following parameters: biomass, solar radiation, rainfall, and infield’s water extractions. Besides, the needed standards and the efficiency index (EFI) used come from already developed models; such standards include: the root-mean-square error (RMSE), the standard deviation, and the precision percentage. The applicationof a genetic algorithm on a Takagi-Sugeno system requires and highly precise prediction on wheat cropping;being, 0.005216 the error estimation, and 99,928 the performance percentage.
Keywords
agriculture; crops; fuzzy set theory; optimization techniques; performance; prediction; wheat;
DOI:
http://doi.org/10.12928/telkomnika.v18i6.15870
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats