Applying convolutional neural networks for limited-memory application
Xuan-Kien Dang, Huynh-Nhu Truong, Viet-Chinh Nguyen, Thi-Duyen-Anh Pham
Abstract
Currently, convolutional neural networks (CNN) are considered as the most effective tool in image diagnosis and processing techniques. In this paper, we studied and applied the modified SSDLite_MobileNetV2 and proposed a solution to always maintain the boundary of the total memory capacity in the following robust bound and applied on the bridge navigational watch & alarm system (BNWAS). The hardware was designed based on raspberry Pi-3, an embedded single board computer with CPU smartphone level, limited RAM without CUDA GPU. Experimental results showed that the deep learning model on an embedded single board computer brings us high effectiveness in application.
Keywords
convolutional neural networks; image processing; limited hardware devices; maritime application; object classification;
DOI:
http://doi.org/10.12928/telkomnika.v19i1.16232
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats