Half Gaussian-based wavelet transform for pooling layer for convolution neural network

Aqeel M. Hamad Alhussainy, Ammar D. Jasim

Abstract


Pooling methods are used to select most significant features to be aggregated to small region. In this paper, anew pooling method is proposed based on probability function. Depending on the fact that, most information is concentrated from mean of the signal to its maximum values, upper half of Gaussian function is used to determine weights of the basic signal statistics, which is used to determine the transform of the original signal into more concise formula, which can represent signal features, this method named half gaussian transform (HGT). Based on strategy of transform computation, Three methods are proposed, the first method (HGT1) is used basic statistics after normalized it as weights to be multiplied by original signal, second method (HGT2) is used determined statistics as features of the original signal and multiply it with constant weights based on half Gaussian, while the third method (HGT3) is worked in similar to (HGT1) except, it depend on entire signal. The proposed methods are applied on three databases, which are (MNIST, CIFAR10 and MIT-BIH ECG) database. The experimental results show that, our methods are achieved good improvement, which is outperformed standard pooling methods such as max pooling and average pooling.


Keywords


convolution neural network; Gaussian; HGT1; HGT2; HGT3;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v19i1.16398

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats