Abnormal activity detection in surveillance video scenes

Jwan Jamal Ali, Narjis Mezaal Shati, Methaq Talib Gaata

Abstract


Automated detection of abnormal activity assumes a significant task in surveillance applications. This paper presents an intelligent framework video surveillance to detect abnormal human activity in an academic environment that takes into account the security and emergency aspects by focusing on three abnormal activities (falling, boxing and waving). This framework designed to consist of the two essential processes: the first one is a tracking system that can follow targets with identify sets of features to understand human activity and measure descriptive information of each target. The second one is a decision system that can realize if the activity of the target track is "normal" or "abnormal” then energizing alarm when recognized abnormal activities.

Keywords


anomaly detection; motion object detection; real-time processing; tracking; video surveillance;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v18i5.16634

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats