Analysis of hybrid non-linear autoregressive neural network and local smoothing technique for bandwidth slice forecast 
	Mohamed Khalafalla Hassan, Sharifah H. S. Ariffin, Sharifah Kamilah Syed- Yusof, N. Effiyana Ghazali, Mohamed EA Kanona 
	
			
		Abstract 
		
		The demand for high steady state network traffic utilization is growing exponentially. Therefore, traffic forecasting has become essential for powering greedy application and services such as the internet of things (IoT) and Big data for 5G networks for better resource planning, allocation, and optimization. The accuracy of forecasting modeling has become crucial for fundamental network operations such as routing management, congestion management, and to guarantee quality of service overall. In this paper, a hybrid network forecast model was analyzed; the model combines a non-linear auto regressive neural network (NARNN) and various smoothing techniques, namely, local regression (LOESS), moving average, locally weighted scatterplot smoothing (LOWESS), the Sgolay filter, Robyn loess (RLOESS), and robust locally weighted scatterplot smoothing (RLOWESS). The effects of applying smoothing techniques with varied smoothing windows were shown and the performance of the hybrid NARNN and smoothing techniques discussed. The results show that the hybrid model can effectively be used to enhance forecasting performance in terms of forecasting accuracy, with the assistance of the smoothing techniques, which minimized data losses. In this work, root mean square error (RMSE) is used as performance measures and the results were verified via statistical significance tests.
		
		 
	
			
		Keywords 
		
		autoregressive neural network; bandwidth slice; forecast; local smoothing;
		
		 
	
				
			
	
	
							
		
		DOI: 
http://doi.org/10.12928/telkomnika.v19i4.17024 	
Refbacks 
				
		This work is licensed under a 
Creative Commons Attribution-ShareAlike 4.0 International License .
	
TELKOMNIKA Telecommunication, Computing, Electronics and Control 1693-6930 , e-ISSN: 2302-9293 Universitas Ahmad Dahlan , 4th Campus+62  274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div>  View TELKOMNIKA Stats