PhosopNet: An improved grain localization and classification by image augmentation

Pakpoom Mookdarsanit, Lawankorn Mookdarsanit

Abstract


Rice is a staple food for around 3.5 billion people in eastern, southern and south-east Asia. Prior to being rice, the rice-grain (grain) is previously husked and/or milled by the milling machine. Relevantly, the grain quality depends on its pureness of particular grain specie (without the mixing between different grain species). For the demand of grain purity inspection by an image, many researchers have proposed the grain classification (sometimes with localization) methods based on convolutional neural network (CNN). However, those papers are necessary to have a large number of labeling that was too expensive to be manually collected. In this paper, the image augmentation (rotation, brightness adjustment and horizontal flipping) is appiled to generate more number of grain images from the less data. From the results, image augmentation improves the performance in CNN and bag-of-words model. For the future moving forward, the grain recognition can be easily done by less number of images.

Keywords


feature transformation; grain classification; grain localization; image augmentation; transfer adaptation learning;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v19i2.18321

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

Statcounter

View TELKOMNIKA Stats