Real time ear recognition using deep learning
Ahmed M. Alkababji, Omar H. Mohammed
Abstract
Automatic identity recognition of ear images represents an active area of interest within the biometric community. The human ear is a perfect source of data for passive person identification. Ear images can be captured from a distance and in a covert manner; this makes ear recognition technology an attractive choice for security applications and surveillance in addition to related application domains. Differing from other biometric modalities, the human ear is neither affected by expressions like faces are nor do need closer touching like fingerprints do. In this paper, a deep learning object detector called faster region based convolutional neural networks (Faster R-CNN) is used for ear detection. A convolutional neural network (CNN) is used as feature extraction. principal component analysis (PCA) and genetic algorithm are used for feature reduction and selection respectively and a fully connected artificial neural network as a matcher. The testing proved the accuracy of 97.8% percentage of success with acceptable speed and it confirmed the accuracy and robustness of the proposed system.
Keywords
CNN; ear recognition; faster R-CNN; PCA; real time;
DOI:
http://doi.org/10.12928/telkomnika.v19i2.18322
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats