Cervical cancer classification using convolutional neural network-support vector machine
Jane Eva Aurelia, Zuherman Rustam, Ilsya Wirasati
Abstract
Cervical cancer is the second most common cancer in women worldwide, and occurs when there are presences of abnormal cells in the cervix, which continue to grow uncontrollably. In the early stages, cervical cancer indications are not perceptible; however, it is easily detected with different forms of machine learning methods, such as the convolutional neural network (CNN). This is a popular method with a wide range of applications and known for its high accuracy value. Moreover, there is a support vector machine (SVM) with several kernel functions that is commonly used in the classification of diseases, and also known for its high accuracy value. Therefore, the combination of CNN–SVM with several linear kernels functions as classifier for the categorization of cervical cancer.
Keywords
cervical cancer; classification; convolutional neural network; machine learning; support vector machine;
DOI:
http://doi.org/10.12928/telkomnika.v19i5.20406
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats