Brain tumor segmentation using multi-level Otsu thresholding and Chan-Vese active contour model

Heru Pramono Hadi, Edi Faisal, Eko Hari Rachmawanto

Abstract


Research on brain tumor segmentation has been developed, ranging from threshold-based methods to the use of the deep learning algorithm. In this study, we proposed a region-based brain tumor segmentation method, namely the active contour model (ACM). Tumor segmentation was carried out using fluid attenuated inversion recovery (FLAIR) modality magnetic resonance imaging (MRI) image data obtained from the multimodal brain tumor image segmentation benchmark (BRATS) 2015 dataset of 86 images. The initial stage of our segmentation method is to find the initial initialization point/area for the ACM algorithm using multi-level Otsu thresholding, with the level used in this study is 3 levels. After the initial initialization area has been obtained, the segmentation process is continued with ACM which explores the tumor area to obtain a full and accurate tumor area result. The results of this study obtained dice similarity (DS) for our study of 0.7856 with a total time required of 28.080722 seconds, which better than other method that we also compared with ours, 0.75 compared to 0.78 in term of DS.

Keywords


active contour model; brain tumor; MRI; multi-level threshold; segmentation;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v20i4.21679

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats