Automatic channel selection using shuffled frog leaping algorithm for EEG based addiction detection
Grace Mary Kanaga Edward, Angela Esther Rajakumar, Kumudha Raimond, Anitha Jeevanayagam
Abstract
Drug addiction is a complex neurobiological disorder that necessitates comprehensive treatment of both the body and mind. It is categorized as a brain disorder due to its impact on the brain. Various methods such as electroencephalography (EEG), functional magnetic resonance imaging (FMRI), and magnetoencephalography (MEG) can capture brain activities and structures. EEG signals provide valuable insights into neurological disorders, including drug addiction. Accurate classification of drug addiction from EEG signals relies on appropriate features and channel selection. Choosing the right EEG channels is essential to reduce computational costs and mitigate the risk of overfitting associated with using all available channels. To address the challenge of optimal channel selection in addiction detection from EEG signals, this work employs the shuffled frog leaping algorithm (SFLA). SFLA facilitates the selection of appropriate channels, leading to improved accuracy. Wavelet features extracted from the selected input channel signals are then analyzed using various machine learning classifiers to detect addiction. Experimental results indicate that after selecting features from the appropriate channels, classification accuracy significantly increased across all classifiers. Particularly, the multi-layer perceptron (MLP) classifier combined with SFLA demonstrated a remarkable accuracy improvement of 15.78% while reducing time complexity.
Keywords
automatic channel selection; drug addiction; electroencephalography; MLP with SFLA; shuffled frog leaping algorithm;
DOI:
http://doi.org/10.12928/telkomnika.v21i5.23172
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats