Automatic channel selection using shuffled frog leaping algorithm for EEG based addiction detection

Grace Mary Kanaga Edward, Angela Esther Rajakumar, Kumudha Raimond, Anitha Jeevanayagam

Abstract


Drug addiction is a complex neurobiological disorder that necessitates comprehensive treatment of both the body and mind. It is categorized as a brain disorder due to its impact on the brain. Various methods such as electroencephalography (EEG), functional magnetic resonance imaging (FMRI), and magnetoencephalography (MEG) can capture brain activities and structures. EEG signals provide valuable insights into neurological disorders, including drug addiction. Accurate classification of drug addiction from EEG signals relies on appropriate features and channel selection. Choosing the right EEG channels is essential to reduce computational costs and mitigate the risk of overfitting associated with using all available channels. To address the challenge of optimal channel selection in addiction detection from EEG signals, this work employs the shuffled frog leaping algorithm (SFLA). SFLA facilitates the selection of appropriate channels, leading to improved accuracy. Wavelet features extracted from the selected input channel signals are then analyzed using various machine learning classifiers to detect addiction. Experimental results indicate that after selecting features from the appropriate channels, classification accuracy significantly increased across all classifiers. Particularly, the multi-layer perceptron (MLP) classifier combined with SFLA demonstrated a remarkable accuracy improvement of 15.78% while reducing time complexity.

Keywords


automatic channel selection; drug addiction; electroencephalography; MLP with SFLA; shuffled frog leaping algorithm;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v21i5.23172

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats