Model development for pneumonia detection from chest radiograph using transfer learning

Ojo Abayomi Fagbuagun, Obinna Nwankwo, Samson Adebisi Akinpelu, Olaiya Folorunsho

Abstract


Accurate interpretation of chest radiographs outcome in epidemiological studies facilitates the process of correctly identifying chest-related or respiratory diseases. Despite the fact that radiological results have been used in the past and is being continuously used for diagnosis of pneumonia and other respiratory diseases, there abounds much variability in the interpretation of chest radiographs. This variability often leads to wrong diagnosis due to the fact that chest diseases often have common symptoms. Moreover, there is no single reliable test that can identify the symptoms of pneumonia. Therefore, this paper presents a standardized approach using convolutional neural network (CNN) and transfer learning technique for identifying pneumonia from chest radiographs that ensure accurate diagnosis and assist physicians in making precise prescriptions for the treatment of pneumonia. A training set consisting of 5,232 optical coherence tomography and chest X-ray images dataset from Mendelev public database was used for this research and the performance evaluation of the model developed on the test set yielded 88.14% accuracy, 90% precision, 85% recall and F1 score of 0.87.


Keywords


chest radiograph; deep learning; diagnosis; neural network; pneumonia;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v20i3.23296

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats