Official logo recognition based on multilayer convolutional neural network model

Zahraa Najm Abdullah, Zinah Abdulridha Abutiheen, Ashwan A. Abdulmunem, Zahraa A. Harjan

Abstract


Deep learning has gained high popularity in the field of image processing and computer vision applications due to its unique feature extraction property. For this characteristic, deep learning networks used to solve different issues in computer vision applications. In this paper the issue has been raised is classification of logo of formal directors in Iraqi government. The paper proposes a multi-layer convolutional neural network (CNN) to classify and recognize these official logos by train the CNN model on several logos. The experimental show the effectiveness of the proposed method to recognize the logo with high accuracy rate about 99.16%. The proposed multi-layers CNN model proves the effectiveness to classify different logos with various conditions.

Keywords


CNN; deep learning; features extraction; learning; logo recognition;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v20i5.23464

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats