Detection and Prediction of Peatland Cover Changes Using Support Vector Machine and Markov Chain Model

Ulfa Khaira, Imas Sukaesih Sitanggang, Lailan Syaufina

Abstract


Detection and prediction of peatland cover changes needs to be done in the rapid rate of deforestation in Indonesia. This work applied Support Vector Machine (SVM) and Markov Chain Model on multitemporal satellite data. The study area is located in the Rokan Hilir district, Riau Province. SVM classification technique used to extract information from satellite data for the years 2000, 2004, 2006, 2009 and 2013. The Markov Chain Model was used to predict future peatland cover. The SVM classification result showed that the Kappa accuracy of peatland cover classification is more than 0.92. The non vegetation areas increased to 307% and the sparse vegetation areas increased to 22% between 2000 and 2013, while dense vegetation areas decreased to 61%. Prediction of future land cover by the Markov Chain Model showed that the use of multitemporal satellite data with 3 years interval provides accurate result for predicting peatland cover changes.


Keywords


change detection; markov chain model; multitemporal; peatland; support vector machine;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v14i1.2400

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats