An approach of cervical cancer diagnosis using class weighting and oversampling with Keras
Hieu Le Ngoc, Khanh Vo Pham Huyen
Abstract
Globally, cervical cancer caused 604,127 new cases and 341,831 deaths in 2020, according to the global cancer observatory. In addition, the number of cervical cancer patients who have no symptoms has grown recently. Therefore, giving patients early notice of the possibility of cervical cancer is a useful task since it would enable them to have a clear understanding of their health state. The use of artificial intelligence (AI), particularly in machine learning, in this work is continually uncovering cervical cancer. With the help of a logit model and a new deep learning technique, we hope to identify cervical cancer using patient-provided data. For better outcomes, we employ Keras deep learning and its technique, which includes class weighting and oversampling. In comparison to the actual diagnostic result, the experimental result with model accuracy is 94.18%, and it also demonstrates a successful logit model cervical cancer prediction.
Keywords
cervical cancer diagnosis; class weighting; logit model; machine learning; oversampling; prediction of cervical cancer;
DOI:
http://doi.org/10.12928/telkomnika.v21i1.24240
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats