Intrusion detection system for imbalance ratio class using weighted XGBoost classifier

Januar Al Amien, Hadhrami Ab Ghani, Nurul Izrin Md Saleh, Edi Ismanto, Rahmad Gunawan

Abstract


The rapid development of the internet of things (IoT) has taken an important role in daily activities. As it develops, IoT is very vulnerable to attacks and creates IoT for users. Intrusion detection system (IDS) can work efficiently and look for activity in the network. Many data sets have already been collected, however, when dealing with problems involving big data and hight data imbalances. This article proposes, using the dataset used by BotIoT to evaluate the system framework to be created, the XGBoost model to improve the detection performance of all types of attacks, to control unbalanced data using the imbalance ratio of each class weight (CW). The experimental results show that the proposed approach greatly increases the detection rate for infrequent disturbances.

Keywords


imbalanced ratio class; intrusion detection; weighted XGBoost;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v21i5.24735

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats