Deep learning approach to DDoS attack with imbalanced data at the application layer

Rahmad Gunawan, Hadhrami Ab Ghani, Nurulaqilla Khamis, Januar Al Amien, Edi Ismanto

Abstract


A distributed denial of service (DDoS) attack is where one or more computers attack or target a server computer, by flooding internet traffic to the server. As a result, the server cannot be accessed by legitimate users. A result of this attack causes enormous losses for a company because it can reduce the level of user trust, and reduce the company’s reputation to lose customers due to downtime. One of the services at the application layer that can be accessed by users is a web-based lightweight directory access protocol (LDAP) service that can provide safe and easy services to access directory applications. We used a deep learning approach to detect DDoS attacks on the CICDDoS 2019 dataset on a complex computer network at the application layer to get fast and accurate results for dealing with unbalanced data. Based on the results obtained, it is observed that DDoS attack detection using a deep learning approach on imbalanced data performs better when implemented using synthetic minority oversampling technique (SMOTE) method for binary classes. On the other hand, the proposed deep learning approach performs better for detecting DDoS attacks in multiclass when implemented using the adaptive synthetic (ADASYN) method.

Keywords


ADASYN; application layer; DDoS; deep learning; LDAP; SMOTE;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v21i5.24857

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats