The impact of software metrics in NASA metric data program dataset modules for software defect prediction

Adinda Ayu Puspita Ramadhani, Radityo Adi Nugroho, Mohammad Reza Faisal, Friska Abadi, Rudy Herteno

Abstract


This paper discusses software metrics and their impact on software defect prediction values in the NASA metric data program (MDP) dataset. The NASA MDP dataset consists of four categories of software metrics: halstead, McCabe, LoC, and misc. However, there is no study showing which metrics participate in increasing the area under the curve (AUC) value of the NASA MDP dataset. This study utilizes 12 modules from the NASA MDP dataset, where these 12 modules are being tested into 14 relationships of software metrics derived from the four existing metric categories. Subsequently, classification is performed using the k-nearest neighbor (kNN) method. The research concludes that software metrics have a significant impact on the AUC value, with the LoC+McCabe+misc metrics relationship influencing the improvement of the AUC value. However, the metrics relationship that has the most impact on achieving less optimal AUC values is McCabe. Halstead metric also plays a role in decreasing the performance of other metrics.

Keywords


k-nearest neighbor; NASA metric data program; software defect; software defect rediction; software metrics;

Full Text:

PDF


DOI: http://doi.org/10.12928/telkomnika.v22i4.25787

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

TELKOMNIKA Telecommunication, Computing, Electronics and Control
ISSN: 1693-6930, e-ISSN: 2302-9293
Universitas Ahmad Dahlan, 4th Campus
Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191
Phone: +62 (274) 563515, 511830, 379418, 371120
Fax: +62 274 564604

View TELKOMNIKA Stats