Semi-supervised Online Multiple Kernel Learning Algorithm for Big Data
Ning Liu, Jianhua Zhao
Abstract
In order to improve the performance of machine learning in big data, online multiple kernel learning algorithms are proposed in this paper. First, a supervised online multiple kernel learning algorithm for big data (SOMK_bd) is proposed to reduce the computational workload during kernel modification. In SOMK_bd, the traditional kernel learning algorithm is improved and kernel integration is only carried out in the constructed kernel subset. Next, an unsupervised online multiple kernel learning algorithm for big data (UOMK_bd) is proposed. In UOMK_bd, the traditional kernel learning algorithm is improved to adapt to the online environment and data replacement strategy is used to modify the kernel function in unsupervised manner. Then, a semi-supervised online multiple kernel learning algorithm for big data (SSOMK_bd) is proposed. Based on incremental learning, SSOMK_bd makes full use of the abundant information of large scale incomplete labeled data, and uses SOMK_bd and UOMK_bd to update the current reading data. Finally, experiments are conducted on UCI data set and the results show that the proposed algorithms are effective.
DOI:
http://doi.org/10.12928/telkomnika.v14i2.2751
Refbacks
There are currently no refbacks.
This work is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License .
TELKOMNIKA Telecommunication, Computing, Electronics and Control ISSN: 1693-6930, e-ISSN: 2302-9293Universitas Ahmad Dahlan , 4th Campus Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Yogyakarta, Indonesia 55191 Phone: +62 (274) 563515, 511830, 379418, 371120 Fax: +62 274 564604
<div class="statcounter"><a title="Web Analytics" href="http://statcounter.com/" target="_blank"><img class="statcounter" src="//c.statcounter.com/10241713/0/0b6069be/0/" alt="Web Analytics"></a></div> View TELKOMNIKA Stats